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New Methods for Locating Phase Boundaries 1 

G. Fescos ,  2 J. M.  Kincaid, 2 and G. Morrison 3 

A new geometric representation for the dew/bubble conditions of a special class 
of polydisperse fluids is used to develop series expansion representations for the 
location of the top of the dew/bubble and shadow curves and for an expansion 
around the top of the dew/bubble and shadow curves. An excellent 
approximation for the one-comonent van der Waals coexistence is given as a 
special illustration of the method. 

KEY WORDS: coexistence curve; critical point; dew/bubble curve; phase 
transitions; polydisperse. 

1. I N T R O D U C T I O N  

In a recent study of a special class of polydisperse fluids we found a par- 
ticularly simple geometric representation of the dew/bubble conditions [ 1 ]. 
In that representation the problem of locating the dew/bubble and shadow 
curves is reduced to locating the points of intersection of two curves. Once 
these points of intersection are located, the composition of the nucleating 
phase is easily determined. In this paper we show that it is possible to 
obtain explicit solutions of the dew/bubble conditions in the form of power 
series expansions. By forming Pad6 approximants from these series it is 
possible to create compact expressions for the phase boundaries that 
provide very accurate representations over a wide range of temperatures 
and densities. Although the models on which we demonstrate our techni- 
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que are rather simple, it seems likely that the method may be applied to 
more complicated models. 

We begin in Section 2 by describing our method for the simple case of 
the one-component van der Waals model. In Section 3 we define two 
models for polydisperse fluids for which we exhibit explicit solutions and 
express the dew/bubble conditions in a form appropriate for our 
calculations. Section 4 contains a description of our series expansion 
method for locating the top of the dew/bubble and shadow curves and for 
an expansion around the top of the dew/bubble curve. 

2. THE ONE-COMPONENT VAN DER WAALS MODEL 

The van der Waals model provides one of the simplest models of a 
fluid that exhibits the qualitative features of most real fluids. Although the 
coexistence curve of the van der Waals model is discussed in almost every 
textbook on thermodynamics, no closed-form expression has been found to 
represent its coexistence curve. In this section we come very close to 
providing such an expression. 

Let us begin by stating the relevant equations for the pressure, p, and 
chemical potential, #, of the model: 

p(T, p)= 8Tp 
- -  3p 2 (1) 
(3 - p )  

and 

+ p 9 

Here p is the number density and T is the temperature. [We have used 
dimensionless variables: energies are reduced by 8a/(27b), volumes by 3b, 
and pressures by a/(27b2), where a and b are the van der Waals constants.] 
Two phases with densities denoted by x and y, respectively, coexist in 
equilibrium if 

p(T, x)=p(T, y) and #(T, x) = p(T, y) (3) 

For T >  1 the only solution of these equations is the trivial solution x = y 
--there is only one phase. When T < 1, the nontrivial solutions of these two 
equations, x(T) and y(T), define the coexistence curve. In addition to the 
usual geometric representations for the equilibrium conditions [e.g., the 
equal area rule, the bitangent construction, or the minimization of 
#(T, p)],  we find it useful (especially in the case of the polydisperse fluid 
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models considered later) to define two new functions whose zeros are the 
roots of Eqs. (3). Let 

f(T, x, y)=p(T, x)-p(T,  y) (4) 

and 

g(T,x, Y)=exp[ I~(T'x)-I~(T'T Y ! ] - I  (5) 

Clearly Eqs. (3) are satisfied if f(T, x, y) = g(T, x, y) =0.  Figure 1 shows 
the curves defined by f = 0 and g = 0 for several values of T. The curve 
f = 0 is especially simple. After factoring out the trivial solution it reduces 
to 0 = ( 8 T -  9x + 3x 2) + (6x - x 2 - 9) y + (3 - x) y2. It is a simple matter to 
show that for x e  (0, 3) this equation has no real roots if T >  1 and two real 
roots if T <  1; the curve is symmetric about the line of trivial solutions 
x = y;  it is perpendicular to that line at the spinodal points (i.e., points for 
which Op/Op =0).  At the critical temperature, To = 1, the two real roots 
become identical: x =  y =  1. Thus as T ~  1 from below the curve, f = 0  
shrinks to a point. 

The curve defined by g = 0 is also symmetric about the line of trivial 
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Fig. 1. The f and g curves and - - ,  respectively) for the one- 
component  van der Waals model in the density-density plane for T =  0.9, 
0,95, and 0.98. 
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solutions; it is perpendicular to that line at the spinodal points. The 
equation g = 0 is transcendental so it is difficult to classify the solutions 
analytically, however, we find that it always consists of a closed loop. (The 
f and g curves are always closed loops in the x - y  plane when T <  1.) 

The solution of the equilibrium conditions is represented by the points 
of intersection of the f and g curves (excluding the intersections with the 
line of trivial solutions). The coexistence curve can be obtained in the form 
of a series expansion by setting T =  1 + A T, x = 1 + Ax, and y = 1 + Ay, 
expanding f and g about  A x = A y = , ~ T = O ,  dividing out the trivial 
solution Ax = Ay, setting A T = Z i ~  1 Ti , ix ~ and Ay = Y~f= 1 Y~ Axe, and 
solving for the coefficients {T;} and {Yi}. We have determined these 
coefficients up to T15 and Y14; they are given in Table I. 

In Fig. 2 we compare the coexistence curve of this model obtained by 
numerical solution to that obtained from the series solution. In addition, 
we show the [7/8] Pad6 approximant  
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Fig. 2. The coexistence curve of the one-component van der Waals 
model in the density-temperature plane. The filled circles are points 
calculated numerically; the thin and thick lines are the 7- and 13-term 
series representations of the coexistence curve; the dashed line is the 
[7/8] Pad6 of the 13-term series. 
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of the series for T(x). The approximant has been constructed so that it 
gives the correct solution at T =  0. The series expansions are fairly accurate 
for temperatures above 0.6. Equation (6) is quite accurate over the entire 
interval [0, 1]. 

3. TWO SIMPLE POLYDISPERSE FLUID MODELS 

The two models analyzed in this section are specific members of a 
special class of models whose equilibrium conditions may be solved by 
simple numerical methods r 1]. The two models are special cases of a 
polydisperse van der Waals model, and each has the feature that p depends 
on the mole fraction distribution density, F(I), only through its first 
moment and #(I), aside from the ideal mixing terms, is a linear function of 

Table II. Functions Defining Models A and B 

Model A 

a(l, J)= (l+J)/2, b(I)= 1 

p(T, p IF) = 8Tp/(3 - p) - 3pZz 

,u(I, T, plF)=T[lnF(l)+ln(3--~p)+3P~o]-~p(z+I)_pj 

( x ) x 9x ln (  y..__y__'~ y + _ _  
Cl=ln ~ + 3 - x  8T \ 3 - - y J  3 - y  

Cz = 9(y - x)/(8T) 

9yzy 
8T 

Model B 

a(l, J)= 1, b(1)=bo+blI 

p(T, p lF) = 8To~J3 - p(b o + bl z)] - 3p 2 

x ) xbo 9x In 
Cl=ln ~ -~3-x 4T 

yb o 9y 
3 -  y(bo + blzy) 4--~ 

xbl yba 
Cz 3 - x  3 -y (bo+blzy  ) 

3--p(l~o+Olz)) 
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I and depends only on the first moment of F. Here I is a continuous species 
label. The equations defining the pressure and chemical potentials of each 
of these models are given in Table II. (The same set of dimensionless 
variables employed in Section 2 is used here.) Model A is a polydisperse 
van der Waals model for which the mean attractive potential energy 
parameter, a(I,J), is given by (I+ J)~2 and the excluded volume 
parameter, b(I), is constant. In model B, a(I,J) is constant and 
b(I) = bo + b~I, with bo+ bl = 1. For  each model we assume that F(I) is a 
Schulz distribution with a mean value of 1 and a variance of ~= l/v: 
F ( I ) =  vVI~-le vl/l'(v), where F is the gamma function. The pressure and 
chemical potential depend on the first moment of F, which we denote by z. 

At a dew/bubble point a bulk phase with density x and composition 
F(I) is in equilibrium with a nucleating phase with density y and com- 
position Fy(I). For these models the dew/bubble conditions can be reduced 
to the following equations: 

p(T, x) = p(T, y, zy) (7) 

1 = exp(C1) (8) 

and 

Zy - (9) 
~:-- C 2 

where zy is the first moment of Fy(I )=F(I )exp(Cl+CJ) ,  and the 
functions C 1 and C2 are given in Table II. 

For each model it is possible to solve Eq. (9) for Zy and use that 
expression to eliminate Zy from Eqs. (7) and (8). Thus, for a given T and e, 
the dew/bubble conditions reduce to solving two equations [(7) and (8)] 
in two unknowns (x and y). As in the one-component case we introduce 
the functions f and g, which in this case we define to be 

and 

f (T,  x, y, ~) --- p(T, x) - p(T, y, Zy) 

g(T, x, y, e)=eC1-ln(1 -eC2) 

(10) 

(11) 

The dew/bubble conditions are simply 

f (T , x ,  y ,e)=O and g(T,x, y ,e)=O (12) 

For fixed T and e the curves defined by Eqs. (12) have many of the same 
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Fig. 3. The dew/bubble ( 

%xo ) 

/ 

density 

) and shadow ( 

3.0 

curves for model A 
in the density-temperature plane for e= 1/5. (P1, Q~) and (P2, Q2) are 
examples of two coexisting phases. The critical point is at (Xc, To); the 
tops of the dew/bubble and shadow curves are denoted by (Xo, To) and 
(Y o, To), respectively. The dotted curve represents the five-term series 
approximation. 

features possessed by those of the one-component van der Waals model 
[1].  The dew/bubble curve, x (T ) ,  and the shadow curve, y (T) ,  for 
model A with e = 1/5 are shown in Fig. 3. Those curves were obtained by 
solving the equations f = 0 and g = 0 numerically. 

4. SERIES EXPANSION METHOD 

The method used to determine these curves by series expansion 
consists of several steps, each of which is described in the following 
subsections. 

4.1. Locating the Tops of the Dew-Bubble and Shadow Curves 

At the top of the dew/bubble and shadow curves, dT/dx  = dT/dy  = O. 
On these curves, if we take T as a function of x and y as a function of x, 
the requirement that dT/dx  = dT/dy  = 0 leads to an additional equation: 

h(T,  x ,  y,  e) = Of/8x x 3g/Sy - Of~@ x Og/~x = 0 (13) 
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Thus To, Xo, and Y0 are the roots of Eqs. (12) and (13). To find these 
roots we begin by dividing out the trivial solution, x = y. To extract this 
trivial root the substitution (T, x, y, e ) =  (Tc+6T, Xc+6x, Yc+6y, e) is 
made in each equation. If the resulting equation is transcendental, the 
equation can be converted into a polynomial by expanding the equation 
about the point (6x, 6y, 6T, e) = (0, 0, 0, 0) in the form of a Taylor series 
and then dividing the root ( 6 x - 6 y )  out. The transformed equations are 
denoted f(fx,  6y, 6T, e)=0,  4(6x, 3y, fiT, e)=0,  and h(fx, 6y, ~T, e)=0.  
These equations can be rewritten in terms of x, y, and T by substituting 
(~Sx, 6y, fiT) = (x - X~, y - Y~, T -  To) into the f, g, and ~ equations. 

To calculate Xo(e), Yo(e), and To(e) or, more precisely, Xc + 6Xo(e), 
Yo + 6yo(e), and Tc + 6T0(e), we assume that 6Xo(e), ,~yo(e), and 6To(e) are 
analytic functions of e and set 6Xo(e)=Zp=lAi ei, 6 y = Z i ~ l B f ,  and 
fiT= Z•= 1 Ci ei. Substituting these series into f, g, and h and expanding the 
results about e = 0 in the form of a Taylor series and then setting the coef- 
ficients of each power of e in each of the resulting equations to zero yield a 
set of linear equations which can be solved for the A~, B~, and C{s. These 
coefficients are listed in Tables III and IV. 

Table IlL Model A Series Coefficients for Xo, Yo, and To 

A 1 = - 9 / 9  

A2 = - 5 1 3 / 6 4 0  

A 3 = - 6 1 4 7 9 / 5 1 2 0 0  

A 4 =  - 6 8 6 0 6 1 9 / 5 7 3 4 4 0 0  

A 5 = - 1 1 2 9 5 3 5 1 9 9 / 5 7 3 4 4 0 0 0 0  

A6 = - - 5 6 1 3 4 2 8 2 3 1 1 / 2 6 2 1 4 4 0 0 0 0 0  

A7 = - - 1 9 3 3 9 4 1 8 5 7 3 1 3 3 3 / 5 1 3 8 0 2 2 4 0 0 0 0 0 0  

B 1 = 27/8 

B 2 = 1431/640 

B3 = - 3 1 3 4 7 / 5 1 2 0 0  

8 4  = 1642437 /5734400  

B 5 = - 3 1 4 3 1 7 8 2 7 / 5 7 3 4 4 0 0 0 0  

B 6 = 25652716119 /183500800000  

B 7 = - 4 1 2 6 4 9 9 5 4 2 8 7 2 9 / 5 1 3 8 0 2 2 4 0 0 0 0 0  

C1 = 9/16 

C 2 =  81/128 

C3 = 3159 /5120  

C 4 = 1 4 7 1 8 5 1 / 1 6 3 8 4 0 0  

C 5 = 2 2 8 1 8 5 0 1 9 / 2 2 9 3 7 6 0 0 0  

C6 = 14324480397 /9175040000  

C 7 = 2 8 1 2 7 9 9 7 6 4 5 3 9 / 1 4 6 8 0 0 6 4 0 0 0 0 0  

C8 = 10365224826624057 /3288334336000000  
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Table IV. Model B Series Coefficients for Xo, Yo, and To 

AI= -b~/2 
A2= -(63b~-20b~)/40 
A3= -(3157b~- 1580b~)/400 
A4= -(1028933b~-693588b~+ 65520b~)/22400 
As= -(326333973bl~ 

~ =5b~/2 
B2= (381b~-40b~)/40 
B3=(9712b~-2705b~)/200 
B4 = (6385315b~-2921856b~+ 168840b~22400 
B5 = (2035472421bi ~  1300347200bl 9 + 171662400b~- 1890000b~)/1120000 

C1 = b2/4 
C2 = 9b~/16 
C 3 = (313b 6 - 60b~)/160 
C4 = (55441b~ - 2148067 + 600b6)/6400 
C5 = (19814223b~ ~  11477340b 9 + 1140300b~)/448000 
C6 = (222169203bi 2 - 1707790800b~1 + 310077600b~~ _ 8666000ba9)/8960000 

4.2. The Dew-Bubble and Shadow Curves 

Our objective is to use the method of series expansions to determine 
the dew-bubble and shadow curves. We begin by noting that these curves 
are expected to be analytic functions of x, y, and T in the neighborhood of 
Xo, Yo, and To; thus we choose to represent the dew-bubble curve by 
T =  To + Z t  ~ - 1 Ti A x  i and the shadow curve by y = Yo + ~ =  1 Yi Axi, where 
A x  = x - Xo.  Since d T / d x  = 0, we anticipate that the curves are parabolic in 
the neighborhood of (X 0, To) and (Y0, To), and thus T 1 = 0. The set of 
coefficients {T i} and { Yi} is obtained by substituting the above series into 
the j7 and ~ equations and expanding each of the resulting equations in the 
form of a Taylor series about  A x  = 0. The coefficients of the powers of A x  

yield a set of linear equations which can be solved for the Ti and Yi's. The 
results are given in Table V. In Fig. 3 we compare the series expansion 
representation to the numerical solution for Model A with e =  1/5. The 
series expansion appears to be accurate down to temperatures of about 0.9. 
When a few more coefficients are calculated and the Pad6 approximant  is 
formed from them, we expect to have a very accurate representation. The 
critical point, (Arc, To), is accurately located by these series. Expansions for 
Xc and T~ in powers of e are easily obtained. 
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Table V. Models A and B Series Coefficients for the Dew/Bubble  and Shadow Curves 

Model A 

YI = - 1  - %/10 + 81~2/40 + 179577e3/448000 + 198360%4/2560000 + 1954521%5/102400000 
Y2 = 1/5 - 81~/200 + 99%2/3500 + 1613277e3/4480000 - 476515953e4/716800000 
Y3 = - 1 / 2 5  - 153e/700 - 351~2/2240 + 238475421e3/358400000 
Y4 = 19/350 + 81~/875 - 41009481 e2/89600000 
Y5 = -257/8750 + 548953e/3200000 

T 1 = 0 
T 2 = - 1 / 4  - %/160 -- 135e2/1024 - 281637e3/1792000 - 417867903~4/1146880000 
T 3 = 1/20 + %/50 + 186381e2/896000 + 18689859e3/35840000 
T4 = - 9 / 2 0 0  -- 27%/2240 - 1214757e2/3584000 
T 5 = 193/7000 + 36873e/280000 

Model B 

T 1 : 0  
T2= -1/4+b~/40+ (77b~-32b~)~2/160+ (208031b~- l124250b~+ 15750b~)~4/56000 
Y1 = -1 -21b~e/lO-(243b~-66b~)~2/20-(2350827b~-lOS1500b~+31500b~)~3/28000 
Y2= 1/5 + 133b~/100+ (89228b~-23905b~)/7000 

+ (125713264b~-79898995b~ +9381750b~)e3/210000 
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